Overview In this chapter we discuss charge in motion, or elec-
tric current. The current density is defined as the current per
cross-sectional area. It is related to the charge density by the con-
tinuity equation. In most cases, the current density is proportional
to the electric field; the constant of proportionality is called the con-
ductivity, with the inverse of the conductivity being the resistivity.
Ohm’s law gives an equivalent way of expressing this proportion-
ality. We show in detail how the conductivity arises on a molecular
level, by considering the drift velocity of the charge carriers when
an electric field is applied. We then look at how this applies to
metals and semiconductors. In a circuit, an electromotive force
(emf) drives the current. A battery produces an emf by means of
chemical reactions. The current in a circuit can be found either by
reducing the circuit via the series and parallel rules for resistors,
or by using Kirchhoff’s rules. The power dissipated in a resistor
depends on the resistance and the current passing through it. Any
circuit can be reduced to a Thévenin equivalent circuit involving
one resistor and one emf source. We end the chapter by investi-
gating how the current changes in an RC circuit.

4.1 Electric current and current density

An electric current is charge in motion. The carriers of the charge can
be physical particles like electrons or protons, which may or may not
be attached to larger objects, atoms or molecules. Here we are not con-
cerned with the nature of the charge carriers but only with the net trans-
port of electric charge their motion causes. The electric current in a wire

Electric currents
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(b)

Figure 4.1.

(a) A swarm of charged particles all moving with
the same velocity u. The frame has area a. The
particles that will pass through the frame in the
next Ar seconds are those now contained in the
oblique prism (b). The prism has base area a
and altitude u Ar cosf, hence its volume is

au At cost or a-uAt.

is the amount of charge passing a fixed mark on the wire in unit time.
The ST unit of current is the coulomb/second, which is called an ampere
(amp, or A):

coulomb

1 ampere = 1 4.1)

second

In Gaussian units current is expressed in esu/second. A current of 1 A is
the same as a current of 2.998-10° esu/s, which is equivalent to 6.24- 1018
elementary electronic charges per second.

It is the net charge transport that counts, with due regard to sign.
Negative charge moving east is equivalent to positive charge moving
west. Water flowing through a hose could be said to involve the trans-
port of an immense amount of charge — about 3 - 10?* electrons per gram
of water! But since an equal number of protons move along with the
electrons (every water molecule contains ten of each), the electric cur-
rent is zero. On the other hand, if you were to charge negatively a nylon
thread and pull it steadily through a nonconducting tube, that would con-
stitute an electric current, in the direction opposite to that of the motion
of the thread.

We have been considering current along a well-defined path, like
a wire. If the current is steady — that is, unchanging in time — it must
be the same at every point along the wire, just as with steady traffic
the same number of cars must pass, per hour, different points along an
unbranching road.

A more general kind of current, or charge transport, involves charge
carriers moving around in three-dimensional space. To describe this we
need the concept of current density. We have to consider average quanti-
ties, for charge carriers are discrete particles. We must suppose, as we did
in defining the charge density p, that our scale of distances is such that
any small region we wish to average over contains very many particles
of any class we are concerned with.

Consider first a special situation in which there are n particles per
cubic meter, on the average, all moving with the same vector velocity u
and carrying the same charge ¢g. Imagine a small frame of area a fixed in
some orientation, as in Fig. 4.1(a). How many particles pass through the
frame in a time interval Az? If At begins the instant shown in Fig. 4.1(a)
and (b), the particles destined to pass through the frame in the next
At interval will be just those now located within the oblique prism in
Fig. 4.1(b). This prism has the frame area as its base and an edge length
u At, which is the distance any particle will travel in a time At. Particles
outside this prism will either miss the window or fail to reach it. The vol-
ume of the prism is the product (base) x (altitude), or au At cos 6, which
can be written a - u At. On the average, the number of particles found in
such a volume will be na-u At. Hence the average rate at which charge is
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passing through the frame, that is, the current through the frame, which
we shall call 1, is

_ g(na-uAr)

1,
“ At

=nga-u. 4.2)
Suppose we had many classes of particles in the swarm, differing in
charge ¢, in velocity vector u, or in both. Each would make its own con-
tribution to the current. Let us tag each kind by a subscript k. The kth
class has charge g; on each particle, moves with velocity vector uy, and
is present with an average population density of n; such particles per
cubic meter. The resulting current through the frame is then

I, =niqia-u; +mga-u +--- ZH-anqkllk. 4.3)
k

On the right is the scalar product of the vector a with a vector quantity
that we shall call the current density J:

J=> magiu (4.4)
k

The SI unit of current density is amperes per square meter (A/m?),' or
equivalently coulombs per second per square meter (C s~'m~2), although
technically the ampere is a fundamental SI unit while the coulomb is not
(a coulomb is defined as one ampere-second). The Gaussian unit of cur-
rent density is esu per second per square centimeter (esus™'cm™2).

Let’s look at the contribution to the current density J from one vari-
ety of charge carriers, electrons say, which may be present with many
different velocities. In a typical conductor, the electrons will have an
almost random distribution of velocities, varying widely in direction and
magnitude. Let N, be the total number of electrons per unit volume, of all
velocities. We can divide the electrons into many groups, each of which
contains electrons with nearly the same speed and direction. The average
velocity of all the electrons, like any average, would then be calculated
by summing over the groups, weighting each velocity by the number in
the group, and dividing by the total number. That is,

1
= — Y nu. 4.5)
V. 2

We use the bar over the top, as in u, to mean the average over a distri-
bution. Comparing Eq. (4.5) with Eq. (4.4), we see that the contribution

' Sometimes one encounters current density expressed in A/ cm?. Nothing is wrong with
that; the meaning is perfectly clear as long as the units are stated. (Long before SI was
promulgated, two or three generations of electrical engineers coped quite well with
amperes per square inch!)
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of the electrons to the current density can be written simply in terms of
the average electron velocity. Remembering that the electron charge is
q = —e, and using the subscript e to show that all quantities refer to this
one type of charge carrier, we can write

Je = —eN,u,. (4.6)

This may seem rather obvious, but we have gone through it step by
step to make clear that the current through the frame depends only on
the average velocity of the carriers, which often is only a tiny fraction,
in magnitude, of their random speeds. Note that Eq. (4.6) can also be
written as J, = p.u., where p, = —eN, is the volume charge density of
the electrons.

4.2 Steady currents and charge conservation
The current I flowing through any surface S is just the surface integral

I= / J - da. 4.7
S

We speak of a steady or stationary current system when the cur-
rent density vector J remains constant in time everywhere. Steady cur-
rents have to obey the law of charge conservation. Consider some region
of space completely enclosed by the balloonlike surface S. The surface
integral of J over all of S gives the rate at which charge is leaving the
volume enclosed. Now if charge forever pours out of, or into, a fixed
volume, the charge density inside must grow infinite, unless some com-
pensating charge is continually being created there. But charge creation
is just what never happens. Therefore, for a truly time-independent cur-
rent distribution, the surface integral of J over any closed surface must be
zero. This is completely equivalent to the statement that, at every point
in space,

div] = 0. (4.8)

To appreciate the equivalence, recall Gauss’s theorem and our fundamen-
tal definition of divergence in terms of the surface integral over a small
surface enclosing the location in question.

We can make a more general statement than Eq. (4.8). Suppose the
current is not steady, J being a function of ¢ as well as of x, y, and z.
Then, since f s J - da is the instantaneous rate at which charge is leaving
the enclosed volume, while f Ve dv is the total charge inside the volume

at any instant, we have
f J-da d / d (4.9)
. = —— V. .
s ar )"
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Letting the volume in question shrink down around any point (x, y, z), the
relation expressed in Eq. (4.9) becomes:”

0
div] = — 8_/; (time-dependent charge distribution).  (4.10)

The time derivative of the charge density p is written as a partial derivative
since p will usually be a function of spatial coordinates as well as time.
Equations (4.9) and (4.10) express the (local) conservation of charge: no
charge can flow away from a place without diminishing the amount of
charge that is there. Equation (4.10) is known as the continuity equation.

Example (Vacuum diode) An instructive example of a stationary current
distribution occurs in the plane diode, a two-electrode vacuum tube; see Fig. 4.2.
One electrode, the cathode, is coated with a material that emits electrons copi-
ously when heated. The other electrode, the anode, is simply a metal plate. By
means of a battery the anode is maintained at a positive potential with respect
to the cathode. Electrons emerge from this hot cathode with very low velocities
and then, being negatively charged, are accelerated toward the positive anode by
the electric field between cathode and anode. In the space between the cathode
and anode the electric current consists of these moving electrons. The circuit is
completed by the flow of electrons in external wires, possibly by the movement
of ions in a battery, and so on, with which we are not here concerned.

In this diode the local density of charge in any region, p, is simply —ne,
where 7 is the local density of electrons, in electrons per cubic meter. The local
current density J is pv, where v is the velocity of electrons in that region. In the
plane-parallel diode we may assume J has no y or z components. If conditions
are steady, it follows then that J, must be independent of x, for if div] = 0
as Eq. (4.8) says, dJx/dx must be zero if Jy = J; = 0. This is belaboring
the obvious; if we have a steady stream of electrons moving in the x direc-
tion only, the same number per second have to cross any intermediate plane
between cathode and anode. We conclude that pv is constant. But observe that
v is not constant; it varies with x because the electrons are accelerated by the
field. Hence p is not constant either. Instead, the negative charge density is
high near the cathode and low near the anode, just as the density of cars on
an expressway is high near a traffic slowdown and low where traffic is moving at
high speed.

4.3 Electrical conductivity and Ohm’s law
There are many ways of causing charge to move, including what we
might call “bodily transport” of the charge carriers. In the Van de Graaff

2 If the step between Eqs. (4.9) and (4.10) is not obvious, look back at our fundamental
definition of divergence in Chapter 2. As the volume shrinks, we can eventually take p
outside the volume integral on the right. The volume integral is to be carried out at one
instant of time. The time derivative thus depends on the difference between p f dvatt
and at t + dr. The only difference is due to the change of p there, since the boundary of
the volume remains in the same place.

Heater \

Cathode -

Figure 4.2.
A vacuum diode with plane-parallel cathode and
anode.
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electrostatic generator (see Problem 4.1) an insulating belt is given a sur-
face charge, which it conveys to another electrode for removal, much as
an escalator conveys people. That constitutes a perfectly good current.
In the atmosphere, charged water droplets falling because of their weight
form a component of the electric current system of the earth. In this sec-
tion we shall be interested in a more common agent of charge transport,
the force exerted on a charge carrier by an electric field. An electric field
E pushes positive charge carriers in one direction, negative charge car-
riers in the opposite direction. If either or both can move, the result is
an electric current in the direction of E. In most substances, and over a
wide range of electric field strengths, we find that the current density is
proportional to the strength of the electric field that causes it. The linear
relation between current density and field is expressed by

J=0E .11

The factor o is called the conductivity of the material. Its value depends
on the material in question; it is very large for metallic conductors,
extremely small for good insulators. It may depend too on the physi-
cal state of the material — on its temperature, for instance. But with such
conditions given, it does not depend on the magnitude of E. If you dou-
ble the field strength, holding everything else constant, you get twice the
current density.

After everything we said in Chapter 3 about the electric field being
zero inside a conductor, you might be wondering why we are now talking
about a nonzero internal field. The reason is that in Chapter 3 we were
dealing with static situations, that is, ones in which all the charges have
settled down after some initial motion. In such a setup, the charges pile
up at certain locations and create a field that internally cancels an applied
field. But when dealing with currents in conductors, we are not letting the
charges pile up, which means that things can’t settle down. For example,
a battery feeds in electrons at one end of a wire and takes them out at the
other end. If the electrons were not taken out at the other end, then they
would pile up there, and the electric field would eventually (actually very
quickly) become zero inside.

The units of ¢ are the units of J (namely C s~'m~2) divided by the
units of E (namely V/m or N/C). You can quickly show that this yields
C%skg~'m™3. However, it is customary to write the units of o as the
reciprocal of ohm-meter, (ohm-m)_l, where the ohm, which is the unit
of resistance, is defined below.

In Eq. (4.11), o may be considered a scalar quantity, implying that
the direction of J is always the same as the direction of E. That is surely
what we would expect within a material whose structure has no “built-
in” preferred direction. Materials do exist in which the electrical con-
ductivity itself depends on the angle the applied field E makes with
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some intrinsic axis in the material. One example is a single crystal of
graphite, which has a layered structure on an atomic scale. For another
example, see Problem 4.5. In such cases J may not have the direction
of E. But there still are linear relations between the components of J and
the components of E, relations expressed by Eq. (4.11) with o a tensor
quantity instead of a scalar.’ From now on we’ll consider only isotropic
materials, those within which the electrical conductivity is the same in
all directions.

Equation (4.11) is a statement of Ohm’s law. It is an empirical law,
a generalization derived from experiment, not a theorem that must be
universally obeyed. In fact, Ohm’s law is bound to fail in the case of
any particular material if the electric field is too strong. And we shall
meet some interesting and useful materials in which “nonohmic” behav-
ior occurs in rather weak fields. Nevertheless, the remarkable fact is the
enormous range over which, in the large majority of materials, current
density is proportional to electric field. Later in this chapter we’ll explain
why this should be so. But now, taking Eq. (4.11) for granted, we want
to work out its consequences. We are interested in the total current /
flowing through a wire or a conductor of any other shape with well-
defined ends, or terminals, and in the difference in potential between
those terminals, for which we’ll use the symbol V (for voltage) rather
than ¢ — ¢ or ¢p.

Now, [ is the surface integral of J over a cross section of the conduc-
tor, which implies that / is proportional to J. Also, V is the line integral
of E on a path through the conductor from one terminal to the other,
which implies that V is proportional to E. Therefore, if J is proportional
to E everywhere inside a conductor as Eq. (4.11) states, then I must be
proportional to V. The relation of V to [ is therefore another expression
of Ohm’s law, which we’ll write this way:

V =IR (Ohm’s law). 4.12)

The constant R is the resistance of the conductor between the two
terminals; R depends on the size and shape of the conductor and the

3 The most general linear relation between the two vectors J and E would be expressed
as follows. In place of the three equations equivalent to Eq. (4.11), namely, Jy = 0 Ey,
Jy = oEy, and J; = o E, we would have Jy = oxyEx + oxyEy + oy E7,

Jy = oyxEx + oyyEy + 0y E;, and J; = oz Ex + 0zyEy + 0. E;. These relations can be
compactly summarized in the matrix equation,

Jx Oxx Oxy Oxz Ex
Jy = Oyx Oy Oy; Ey .
Jz Oz Ozy Oz E;

The nine coefficients oy, Oxy, etc., make up a tensor, which here is just a matrix. In
this case, because of a symmetry requirement, it would turn out that oyy = oy,

Oy = Ozy, Ox; = Oz Furthermore, by a suitable orientation of the x, y, z axes, all the
coefficients could be rendered zero except oxy, oyy, and 0.
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Figure 4.3.

The resistance of a conductor of length L,
uniform cross-sectional area A, and
conductivity o.

conductivity o of the material. The simplest example is a solid rod of
cross-sectional area A and length L. A steady current / flows through
this rod from one end to the other (Fig. 4.3). Of course there must be
conductors to carry the current to and from the rod. We consider the
terminals of the rod to be the points where these conductors are attached.
Inside the rod the current density is given by

1
J==, 4.13
1 (4.13)
and the electric field strength is given by
Vv
E=—. 4.14
7 (4.14)

The resistance R in Eq. (4.12) is V//I. Using Eqs. (4.11), (4.13), and (4.14)
we easily find that

v_<©LE_ L (4.15)
I  AJ Ao

On the way to this simple formula we made some tacit assumptions.
First, we assumed the current density is uniform over the cross section
of the bar. To see why that must be so, imagine that J is actually greater
along one side of the bar than on the other. Then £ must also be greater
along that side. But then the line integral of E from one terminal to the
other would be greater for a path along one side than for a path along the
other, and that cannot be true for an electrostatic field.

A second assumption was that J kept its uniform magnitude and
direction right out to the ends of the bar. Whether that is true or not
depends on the external conductors that carry current to and from the
bar and how they are attached. Compare Fig. 4.4(a) with Fig. 4.4(b).
Suppose that the terminal in (b) is made of material with a conductivity
much higher than that of the bar. That will make the plane of the end
of the bar an equipotential surface, creating the current system to which
Eq. (4.15) applies exactly. But all we can say in general about such “end
effects” is that Eq. (4.15) will give R to a good approximation if the width
of the bar is small compared with its length.
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(b)

Nonconducting
environment

A third assumption is that the bar is surrounded by an electrically
nonconducting medium. Without that, we could not even define an iso-
lated current path with terminals and talk about the current I and the
resistance R. In other words, it is the enormous difference in conduc-
tivity between good insulators, including air, and conductors that makes
wires, as we know them, possible. Imagine the conducting rod of Fig. 4.3
bent into some other shape, as in Fig. 4.5. Because it is embedded in a
nonconducting medium into which current cannot leak, the problem pre-
sented in Fig. 4.5 is for all practical purposes the same as the one in
Fig. 4.3 which we have already solved. Equation (4.15) applies to a bent
wire as well as a straight rod, if we measure L along the wire.

In a region where the conductivity o is constant, the steady cur-
rent condition divJ = 0 (Eq. (4.8)) together with Eq. (4.11) implies that
divE = 0 also. This tells us that the charge density is zero within that
region. On the other hand, if o varies from one place to another in the
conducting medium, steady current flow may entail the presence of static
charge within the conductor. Figure 4.6 shows a simple example, a bar
made of two materials of different conductivity, o1 and o». The current
density J must be the same on the two sides of the interface; otherwise
charge would continue to pile up there. It follows that the electric field E

Figure 4.4.

Different ways in which the current I might be
introduced into the conducting bar. In (a) it has
to spread out before the current density J
becomes uniform. In (b) if the external conductor
has much higher conductivity than the bar, the
end of the bar will be an equipotential and the
current density will be uniform from the
beginning. For long thin conductors, such as
ordinary wires, the difference is negligible.

Figure 4.5.

As long as our conductors are surrounded by a
nonconducting medium (air, oil, vacuum, etc.),
the resistance R between the terminals doesn’t
depend on the shape, only on the length of the
conductor and its cross-sectional area.
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Figure 4.6.

When current flows through this composite
conductor, a layer of static charge appears at
the interface between the two materials, so as to
provide the necessary jump in the electric field
E. In this example o, < o1, hence E, must be
greater than Ej.

ER—
~

0,> 0, / Layer of positive charge

91
o
J 2

EZ
B

must be different in the two regions, with an abrupt jump in value at the
interface. As Gauss’s law tells us, such a discontinuity in E must reflect
the presence of a layer of static charge at the interface. Problem 4.2 looks
further into this example.

Instead of the conductivity o we could have used its reciprocal, the
resistivity p, in stating the relation between electric field and current

density:
J= <l> E. (4.16)
0

It is customary to use p as the symbol for resistivity and o as the symbol
for conductivity in spite of their use in some of our other equations for
volume charge density and surface charge density. In the rest of this chap-
ter p will always denote resistivity and o conductivity. Equation (4.15)
written in terms of resistivity becomes

R="2 (4.17)

The SI unit for resistance is defined to be the ohm (denoted by €2), which
is given by Eq. (4.12) as

volt

1 ohm =1 (4.18)

ampere

In terms of other SI units, you can show that 1 ohm equals
1 kg m?2 C~2s~! If resistance R is in ohms, it is evident from Eq. (4.17)
that the resistivity p must have units of (ohms) x (meters). The official
SI unit for p is therefore the ohm-meter. But another unit of length can
be used with perfectly clear meaning. A unit commonly used for resis-
tivity, in both the physics and technology of electrical conduction, is the
ohm-centimeter (ohm-cm). If one chooses to measure resistivity in ohm-
cm, the corresponding unit for conductivity is written as ohm™'em™!,
or (ohm-cm)~!, and called “reciprocal ohm-cm.” It should be empha-
sized that Eqs. (4.11) through (4.17) are valid for any self-consistent
choice of units.
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Example (Lengthening a wire) A wire of pure tin is drawn through a die,
reducing its diameter by 25 percent and increasing its length. By what factor is
its resistance increased? It is then flattened into a ribbon by rolling, which results
in a further increase in its length, now twice the original length. What is the
overall change in resistance? Assume the density and resistivity remain constant
throughout.

Solution Let A be the cross-sectional area, and let L be the length. The volume
AL is constant, so L o< 1/A. The resistance R = pL/A is therefore proportional
to 1 /A2. If the die reduces the diameter by the factor 3/4, then it reduces A by
the factor (3/ 4)2. The resistance is therefore multiplied by the factor 1/(3/ 4% =
3.16. In terms of the radius r, the resistance is proportional to 1/ .

Since A o< 1/L, we can alternatively say that the resistance R = pL/A is
proportional to L2. An overall increase in L by the factor 2 therefore yields an
overall increase in R by the factor 22— 4,

In Gaussian units, the unit of charge can be expressed in terms of
other fundamental units, because Coulomb’s law with a dimensionless
coefficient yields 1 esu = 1 g!/2cm?/?s~!, as you can verify. You can
use this to show that the units of resistance are s/cm. Since Eq. (4.17) still
tells us that the resistivity p has dimensions of (resistance) x (length),
we see that the Gaussian unit of p is simply the second. The analogous
statement in the SI system, as you can check, is that the units of p are
seconds divided by the units of €. Hence €pp has the dimensions of time.
This association of a resistivity with a time has a natural interpretation
which will be explained in Section 4.11.

The conductivity and resistivity of a few materials are given in dif-
ferent units for comparison in Table 4.1. The key conversion factor is also
given (see Appendix C for the derivation).

Example (Drift velocity in a copper wire) A copper wire L = 1 km long
is connected across a V = 6 V battery. The resistivity of the copper is p =
1.7 - 108 ohm-meter, and the number of conduction electrons per cubic meter is
N = 8-1023 m=3. What is the drift velocity of the conduction electrons under
these circumstances? How long does it take an electron to drift once around the
circuit?

Solution  Equation (4.6) gives the magnitude of the current density as J = Nev,
so the drift velocity is v = J/Ne. But J is given by J = oE = (1/p)(V/L).
Substituting this into v = J/Ne yields

1% 6V
V= =
pLNe  (1.7-10~8 ohm-m) (1000 m)(8 - 1028 m—3)(1.6-10—1° C)
=2.8-107 m/s. (4.19)

This is much slower than the average thermal speed of an electron at room tem-
perature, which happens to be about 10° m/s. The time to drift once around the
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Table 4.1.

Resistivity and its reciprocal, conductivity, for a few materials

Material Resistivity p Conductivity o

Pure copper, 273 K 1.56 - 10~8 ohm-m 6.4-107 (ohm-m)~—!
17310718 g 58101771

Pure copper, 373 K 2.24-1078 ochm-m 45107 (ohm-m)~!
24710718 4.0-1017 g1

Pure germanium, 273 K 2 ohm-m 0.5 (ohm—m)_1
22.10710g 45.10%s!

Pure germanium, 500 K 1.2- 1073 ohm-m 830 (ohm-rn)_1
13107135 7.7-1012 51

Pure water, 291 K 2.5-10° ohm-m 4.0-107% (chm-m)~!
2810775 3.6-10%s7!

Seawater (varies with 0.25 ohm-m 4 (ohm-m)_1

salinity) 2.8-10" g 3.6-10105~1

Note: 1 ohm-meter = 1.11-10~10 g,

circuitisz = (1000m) /(2.8 - 105 m/s) = 3.6- 107 s, which is a little over a year.
Note that v is independent of the cross-sectional area. This makes sense, because
if we have two separate identical wires connected to the same voltage source,
they have the same v. If we combine the two wires into one thicker wire, this
shouldn’t change the v.

When dealing with currents in wires, we generally assume that the
wire is neutral. That is, we assume that the moving electrons have the
same density per unit length as the stationary protons in the lattice.
We should mention, however, that an actual current-carrying wire is not
neutral. There are surface charges on the wire, as explained by Marcus
(1941) and demonstrated by Jefimenko (1962). These charges are neces-
sary for three reasons.

First, the surface charges keep the current flowing along the path of
the wire. Consider a battery connected to a long wire, and let’s say we
put a bend in the wire far from the battery. If we then bend the wire in
some other arbitrary manner, the battery doesn’t “know” that we changed
the shape, so it certainly can’t be the cause of the electrons taking a
new path through space. The cause of the new path must be the elec-
tric field due to nearby charges. These charges appear as surface charges
on the wire.

Second, the existence of a net charge on the wire is necessary to
create the proper flow of energy associated with the current. To get a
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handle on this energy flow, we will have to wait until we learn about
magnetic fields in Chapter 6 and the Poynting vector in Chapter 9. But
for now we’ll just say that to have the proper energy flow, there must be
a component of the electric field pointing radially away from the wire.
This component wouldn’t exist if the net charge on the wire were zero.

Third, the surface charge causes the potential to change along the
wire in a manner consistent with Ohm’s law. See Jackson (1996) for more
discussion on these three roles that the surface charges play.

However, having said all this, it turns out that in most of our discus-
sions of circuits and currents in this book, we won’t be interested in the
electric field external to the wires. So we can generally ignore the surface
charges, with no ill effects.

4.4 The physics of electrical conduction

4.4.1 Currents and ions

To explain electrical conduction we have to talk first about atoms and
molecules. Remember that a neutral atom, one that contains as many
electrons as there are protons in its nucleus, is precisely neutral (see
Section 1.3). On such an object the net force exerted by an electric field
is exactly zero. And even if the neutral atom were moved along by some
other means, that would not be an electric current. The same holds for
neutral molecules. Matter that consists only of neutral molecules ought
to have zero electrical conductivity. Here one qualification is in order:
we are concerned now with steady electric currents, that is, direct cur-
rents, not alternating currents. An alternating electric field could cause
periodic deformation of a molecule, and that displacement of electric
charge would be a true alternating electric current. We shall return to
that subject in Chapter 10. For a steady current we need mobile charge
carriers, or ions. These must be present in the material before the elec-
tric field is applied, for the electric fields we shall consider are not nearly
strong enough to create ions by tearing electrons off molecules. Thus the
physics of electrical conduction centers on two questions: how many ions
are there in a unit volume of material, and how do these ions move in the
presence of an electric field?

In pure water at room temperature approximately two HoO molecules
in a billion are, at any given moment, dissociated into negative ions,
OH™, and positive ions, HT. (Actually the positive ion is better described
as OH;‘, that is, a proton attached to a water molecule.) This provides
approximately 6-10'3 negative ions and an equal number of positive
ions in a cubic centimeter of water.* The motion of these ions in the

4 Students of chemistry may recall that the concentration of hydrogen ions in pure water
corresponds to a pH value of 7.0, which means the concentration is 10~79 mole/liter.
That is equivalent to 107190 mole/em3. A mole of anything is 6.02 - 1083 things —
hence the number 6 - 1013 given above.
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Field region
FIGURE 5.8

Problem 5.2 Find and sketch the trajectory of the particle in Ex. 5.2, if it starts at
the origin with velocity

(@ v(0) = (E/B)Y,
(b) v(0) = (E/2B)j,

© v0) = (E/B)J +2).

Problem 5.3 In 1897, J. J. Thomson “discovered” the electron by measuring the
charge-to-mass ratio of “cathode rays” (actually, streams of electrons, with charge
g and mass m) as follows:

(a) First he passed the beam through uniform crossed electric and magnetic fields
E and B (mutually perpendicular, and both of them perpendicular to the beam),
and adjusted the electric field until he got zero deflection. What, then, was the
speed of the particles (in terms of E and B)?

(b) Then he turned off the electric field, and measured the radius of curvature, R,
of the beam, as deflected by the magnetic field alone. In terms of E, B, and R,
what is the charge-to-mass ratio (¢ /m) of the particles?

5.1.3 H Currents

The current in a wire is the charge per unit time passing a given point. By def-
inition, negative charges moving to the left count the same as positive ones to
the right. This conveniently reflects the physical fact that almost all phenomena
involving moving charges depend on the product of charge and velocity—if you
reverse the signs of g and v, you get the same answer, so it doesn’t really mat-
ter which you have. (The Lorentz force law is a case in point; the Hall effect
(Prob. 5.41) is a notorious exception.) In practice, it is ordinarily the negatively
charged electrons that do the moving—in the direction opposite to the electric
current. To avoid the petty complications this entails, I shall often pretend it’s the
positive charges that move, as in fact everyone assumed they did for a century
or so after Benjamin Franklin established his unfortunate convention.’> Current is
measured in coulombs-per-second, or amperes (A):

1A=1C/s. (5.12)

SIf we called the electron plus and the proton minus, the problem would never arise. In the context of
Franklin’s experiments with cat’s fur and glass rods, the choice was completely arbitrary.
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A line charge A traveling down a wire at speed v (Fig. 5.9) constitutes a current
I =Av, (5.13)

because a segment of length vAf, carrying charge AvAt, passes point P in a time
interval Az. Current is actually a vector:

I=Av. (5.14)

Because the path of the flow is dictated by the shape of the wire, one doesn’t
ordinarily bother to display the direction of I explicitly,® but when it comes to
surface and volume currents we cannot afford to be so casual, and for the sake of
notational consistency it is a good idea to acknowledge the vectorial character of
currents right from the start. A neutral wire, of course, contains as many stationary
positive charges as mobile negative ones. The former do not contribute to the
current—the charge density A in Eq. 5.13 refers only to the moving charges. In
the unusual situation where both types move, I = A v, + A_v_.
The magnetic force on a segment of current-carrying wire is

Frae = /(V x B)dq = /(v x B)Adl = /(I x B)dl. (5.15)

Inasmuch as I and dl both point in the same direction, we can just as well write
this as

Fiog = /I(dl x B). (5.16)

Typically, the current is constant (in magnitude) along the wire, and in that case /
comes outside the integral:

Finge = I/(dl x B). (5.17)

Example 5.3. A rectangular loop of wire, supporting a mass m, hangs vertically
with one end in a uniform magnetic field B, which points into the page in the
shaded region of Fig. 5.10. For what current /, in the loop, would the magnetic
force upward exactly balance the gravitational force downward?

OFor the same reason, if you are describing a locomotive constrained to move along a specified track,
you would probably speak of its speed, rather than its velocity.
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Solution
First of all, the current must circulate clockwise, in order for (I x B) in the hori-
zontal segment to point upward. The force is

Fuag = 1 Ba,

where a is the width of the loop. (The magnetic forces on the two vertical seg-
ments cancel.) For Fi,,s to balance the weight (img), we must therefore have

mg
"~ Ba’
The weight just hangs there, suspended in mid-air!
What happens if we now increase the current? Then the upward magnetic force
exceeds the downward force of gravity, and the loop rises, lifting the weight.
Somebody’s doing work, and it sure looks as though the magnetic force is re-
sponsible. Indeed, one is tempted to write

Winag = Fuagh = 1 Babh, (5.19)

I (5.18)

where £ is the distance the loop rises. But we know that magnetic forces never do
work. What’s going on here?

Well, when the loop starts to rise, the charges in the wire are no longer moving
horizontally—their velocity now acquires an upward component u, the speed of
the loop (Fig. 5.11), in addition to the horizontal component w associated with
the current (/ = Aw). The magnetic force, which is always perpendicular to the
velocity, no longer points straight up, but tilts back. It is perpendicular to the net
displacement of the charge (which is in the direction of v), and therefore it does
no work on q. It does have a vertical component (qw B); indeed, the net vertical
force on all the charge (Aa) in the upper segment of the loop is

Fyex = AawB = [ Ba (5.20)

(as before); but now it also has a horizontal component (qu B), which opposes
the flow of current. Whoever is in charge of maintaining that current, therefore,
must now push those charges along, against the backward component of the mag-
netic force.



5.1 The Lorentz Force Law 219

q w

FIGURE 5.11

The total horizontal force on the top segment is
Fhoriz = AauB. (5.21)

In a time dt, the charges move a (horizontal) distance w dt, so the work done by
this agency (presumably a battery or a generator) is

Whoattery = Aa B / uwdt = IBah,

which is precisely what we naively attributed to the magnetic force in Eq. 5.19.
Was work done in this process? Absolutely! Who did it? The battery! What, then,
was the role of the magnetic force? Well, it redirected the horizontal force of the
battery into the vertical motion of the loop and the weight.”

Fmop

FIGURE 5.12

It may help to consider a mechanical analogy. Imagine you’re sliding a trunk
up a frictionless ramp, by pushing on it horizontally with a mop (Fig. 5.12). The
normal force (N) does no work, because it is perpendicular to the displacement.
But it does have a vertical component (which in fact is what lifts the trunk), and
a (backward) horizontal component (which you have to overcome by pushing on
the mop). Who is doing the work here? You are, obviously—and yet your force
(which is purely horizontal) is not (at least, not directly) what lifts the box. The

7If you like, the vertical component of Finag does work lifting the car, but the horizontal component
does equal negative work opposing the current. However you look at it, the net work done by the
magnetic force is zero.
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normal force plays the same passive (but crucial) role as the magnetic force in
Ex. 5.3: while doing no work itself, it redirects the efforts of the active agent
(you, or the battery, as the case may be), from horizontal to vertical.

When charge flows over a surface, we describe it by the surface current den-
sity, K, defined as follows: Consider a “ribbon” of infinitesimal width dI , run-
ning parallel to the flow (Fig. 5.13). If the current in this ribbon is d1, the surface
current density is

dl

=—. 5.22
dl (5.22)

In words, K is the current per unit width. In particular, if the (mobile) surface
charge density is o and its velocity is v, then

K=ov. (5.23)

In general, K will vary from point to point over the surface, reflecting variations
in o and/or v. The magnetic force on the surface current is

Finge = /(v x B)o da = /(K x B) da. (5.24)

Caveat: Just as E suffers a discontinuity at a surface charge, so B is discontinuous
at a surface current. In Eq. 5.24, you must be careful to use the average field, just
as we did in Sect. 2.5.3.

When the flow of charge is distributed throughout a three-dimensional region,
we describe it by the volume current density, J, defined as follows: Consider a
“tube” of infinitesimal cross section da | , running parallel to the flow (Fig. 5.14).
If the current in this tube is d1, the volume current density is

ol

= . 5.25
da, (5.25)

In words, J is the current per unit area. If the (mobile) volume charge density is
p and the velocity is v, then

J = pv. (5.26)

AN

FIGURE 5.13
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FIGURE 5.14

The magnetic force on a volume current is therefore

Fiog = /(V x B)pdt = /(J x B)dr. (5.27)

Example 5.4.

(a) A current [ is uniformly distributed over a wire of circular cross section, with
radius a (Fig. 5.15). Find the volume current density J.

Solution
The area (perpendicular to the flow) is a2, so
1
 mwa?
This was trivial because the current density was uniform.

(b) Suppose the current density in the wire is proportional to the distance from the
axis,

J =ks

(for some constant k). Find the total current in the wire.

& sdd
I %
FIGURE 5.15 FIGURE 5.16

Solution
Because J varies with s, we must integrate Eq. 5.25. The current through the
shaded patch (Fig. 5.16) is Jda,, and da; = sds d¢. So

2wka’

I=/(ks)(sdsd¢)=27tk/as2ds= 3
0
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According to Eq. 5.25, the total current crossing a surface S can be written as

I=/JdaL=/J-da. (5.28)
S S

(The dot product serves neatly to pick out the appropriate component of da.) In
particular, the charge per unit time leaving a volume V is

%J-da:/(V-J)dt.
S v

Because charge is conserved, whatever flows out through the surface must come
at the expense of what remains inside:

__4d __[ (%
/V(V-J)dt——dtfvpdt— [v<8t>dt'

(The minus sign reflects the fact that an outward flow decreases the charge left
in V.) Since this applies to any volume, we conclude that

__or
VI=-o (5.29)

This is the precise mathematical statement of local charge conservation; it is called
the continuity equation.

For future reference, let me summarize the “dictionary” we have implicitly de-
veloped for translating equations into the forms appropriate to point, line, surface,
and volume currents:

> COavi~ |« )Idlw/ ( )Kda~/ ( )Jdr. (5.30)
i—1 line surface volume

This correspondence, which is analogous to g ~ A dl ~ o da ~ p dt for the var-
ious charge distributions, generates Eqgs. 5.15, 5.24, and 5.27 from the original
Lorentz force law (5.1).

Problem 5.4 Suppose that the magnetic field in some region has the form
B =kzx

(where k is a constant). Find the force on a square loop (side a), lying in the yz
plane and centered at the origin, if it carries a current /, flowing counterclockwise,
when you look down the x axis.

Problem 5.5 A current / flows down a wire of radius a.

(a) If it is uniformly distributed over the surface, what is the surface current den-
sity K?

(b) If it is distributed in such a way that the volume current density is inversely
proportional to the distance from the axis, what is J(s)?



